/* U4(2) as 5 x 5 matrices over Z[w]. Representation 5a. Absolutely irreducible representation. Schur Index 1. MONOMIAL GROUP: M := = 5. SEED: Nonzero v negated by x, y*x*y^-1, y^2*x*y^-2, y^3*x*y^-3 where. = 3^3:S4. v has 2 x 40 = 80 images under G; has 40 images under G. BASIS: v, v*y, v*y^2, v*y^3, v*y^4. Possible matrix entries are in {0,1,-1,w,-w,w^2,-w^2} (norms 0, 1 only). Average number of nonzero entries for any element of the group: 15 (exactly 60%). Entry Av/Mat %Av/Mat 0 10 40 nonzero 15 60 1 2.5 [2+1/2] 10 -1 2.5 [2+1/2] 10 w 2.5 [2+1/2] 10 -w 2.5 [2+1/2] 10 w^2 2.5 [2+1/2] 10 -w^2 2.5 [2+1/2] 10 p-MODULAR REDUCTIONS: p = 2: 4a.1 (uniserial). other: absolutely irreducible. */ F:=CyclotomicField(3); th:=2*w+1; // This is \theta [= i3] in the ATLAS. G:=MatrixGroup<5,F|[ -1,0,0,0,0, 0,-1,0,0,0, 0,0,-1,0,0, 0,0,0,-1,0, -w^2,w,w^2,-w,1] ,\[ 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0, 0,0,0,0,1, 1,0,0,0,0] >; a:=x;b:=y; xc:=GL(5,F)![Conjugate(u,2):u in Eltseq(x)]; yc:=GL(5,F)![Conjugate(u,2):u in Eltseq(y)]; // Forms: B1 (Hermitian). // B1 (Hermitian form): Determinant 16 = 2^4. B1:=MatrixAlgebra(F,5)![ 3,-1,-th,th,-1, -1,3,-1,-th,th, th,-1,3,-1,-th, -th,th,-1,3,-1, -1,-th,th,-1,3]; // x*B1*Transpose(xc) eq B1; // y*B1*Transpose(yc) eq B1; // Centralising algebra: Scalars only. C1:=MatrixAlgebra(F,5)![ 1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0, 0,0,0,0,1];