/* www-ATLAS of Group Representations. U3(4):4 represented as 12 x 12 matrices over GF(13). */ F:=GF(13); x:=CambridgeMatrix(3,F,12,\[ 0,1,0,0,0,0,0,0,0,0,0,0, 1,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,0,0,0,0,0, 0,0,0,0,0,0,0,1,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0, 0,0,0,0,0,1,0,0,0,0,0,0, 9,9,2,2,4,1,4,1,12,0,0,0, 0,0,4,4,4,5,4,5,0,12,0,0, 1,1,11,11,3,9,3,9,0,0,12,0, 1,1,7,7,5,12,5,12,0,0,0,12]); y:=CambridgeMatrix(3,F,12,\[ 0,12,0,0,0,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0, 0,0,0,0,0,1,0,0,0,0,0,0, 12,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,1,0,0,0, 0,0,0,0,0,0,0,0,0,1,0,0, 0,0,0,0,0,0,0,0,0,0,1,0, 0,0,0,0,0,0,0,0,0,0,0,1, 1,7,9,5,4,1,12,11,7,4,3,11, 12,0,6,3,12,4,9,6,9,6,9,8, 0,0,0,1,0,0,0,0,0,0,0,0]); G:=MatrixGroup<12,F|x,y>; print "Group G is U3(4):4 < GL(12,GF(13))";