# Character: X2 # Comment: REPSN package by Dabbaghian-Abdoly, reseeded by E(13)-eigenvector of ab # Ind: -1 # Ring: C # Sparsity: 81% # Checker result: pass # Conjugacy class representative result: pass local a, A, b, B, c, C, w, W, i, result, delta, idmat; result := rec(); w := E(3); W := E(3)^2; a := E(5)+E(5)^4; A := -1-a; # b5, b5* b := E(7)+E(7)^2+E(7)^4; B := -1-b; # b7, b7** c := E(11)+E(11)^3+E(11)^4+E(11)^5+E(11)^9; C := -1-c; # b11, b11** i := E(4); result.comment := "U34 as 12 x 12 matrices\n"; result.generators := [ [[0,1,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0], [E(13)+E(13)^2+2*E(13)^3+E(13)^4+2*E(13)^5+E(13)^6+2*E(13)^7+E(13)^8+2*E(13)^9+E(13)^10+E(13)^11, E(13)+E(13)^2+2*E(13)^3+E(13)^4+2*E(13)^5+E(13)^6+2*E(13)^7+E(13)^8+2*E(13)^9+E(13)^10+E(13)^11, E(13)^2+E(13)^3+E(13)^4+E(13)^5+E(13)^6+E(13)^7+E(13)^8+E(13)^9+E(13)^10+E(13)^11, E(13)^2+E(13)^3+E(13)^4+E(13)^5+E(13)^6+E(13)^7+E(13)^8+E(13)^9+E(13)^10+E(13)^11, -1,-1,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [-2*E(13)-3*E(13)^3-E(13)^4-3*E(13)^5-E(13)^6-3*E(13)^7-E(13)^8-2*E(13)^9-E(13)^10-E(13)^11-E(13)^12, -2*E(13)-3*E(13)^3-E(13)^4-3*E(13)^5-E(13)^6-3*E(13)^7-E(13)^8-2*E(13)^9-E(13)^10-E(13)^11-E(13)^12, E(13)+E(13)^10+E(13)^11+2*E(13)^12,E(13)+E(13)^10+E(13)^11+2*E(13)^12, -E(13)-E(13)^2-E(13)^3-E(13)^4-E(13)^5-E(13)^6-E(13)^7-E(13)^8-E(13)^9-E(13)^10-E(13)^12, -E(13)-E(13)^2-E(13)^3-E(13)^4-E(13)^5-E(13)^6-E(13)^7-E(13)^8-E(13)^9-E(13)^10-E(13)^12, 0,E(13)^12,E(13)^12,-1,0,0], [E(13)-2*E(13)^2+2*E(13)^3-2*E(13)^4+3*E(13)^5-E(13)^6+3*E(13)^7-E(13)^8+2*E(13)^9-E(13)^10+E(13)^11, E(13)-2*E(13)^2+2*E(13)^3-2*E(13)^4+3*E(13)^5-E(13)^6+3*E(13)^7-E(13)^8+2*E(13)^9-E(13)^10+E(13)^11, -2*E(13)-2*E(13)^3-E(13)^5-E(13)^7-E(13)^9-E(13)^10-E(13)^11-2*E(13)^12, -2*E(13)-2*E(13)^3-E(13)^5-E(13)^7-E(13)^9-E(13)^10-E(13)^11-2*E(13)^12, 3*E(13)+E(13)^2+2*E(13)^3+2*E(13)^4+2*E(13)^5+2*E(13)^6+2*E(13)^7+2*E(13)^8+2*E(13)^9+2*E(13)^10+E(13)^11+2*E(13)^12, 3*E(13)+E(13)^2+2*E(13)^3+2*E(13)^4+2*E(13)^5+2*E(13)^6+2*E(13)^7+2*E(13)^8+2*E(13)^9+2*E(13)^10+E(13)^11+2*E(13)^12, 0,-E(13)-E(13)^12,-E(13)-E(13)^12,0,-1,0], [E(13)+2*E(13)^2+4*E(13)^4-E(13)^5+4*E(13)^6-2*E(13)^7+4*E(13)^8-2*E(13)^9+4*E(13)^10-E(13)^11+3*E(13)^12, E(13)+2*E(13)^2+4*E(13)^4-E(13)^5+4*E(13)^6-2*E(13)^7+4*E(13)^8-2*E(13)^9+4*E(13)^10-E(13)^11+3*E(13)^12, 2*E(13)-E(13)^2+2*E(13)^3-E(13)^4+2*E(13)^5-E(13)^6+2*E(13)^7-E(13)^8+E(13)^9-E(13)^10+E(13)^12, 2*E(13)-E(13)^2+2*E(13)^3-E(13)^4+2*E(13)^5-E(13)^6+2*E(13)^7-E(13)^8+E(13)^9-E(13)^10+E(13)^12, -3*E(13)-2*E(13)^3-E(13)^4-2*E(13)^5-E(13)^6-2*E(13)^7-E(13)^8-2*E(13)^9-2*E(13)^10-E(13)^11-3*E(13)^12, -3*E(13)-2*E(13)^3-E(13)^4-2*E(13)^5-E(13)^6-2*E(13)^7-E(13)^8-2*E(13)^9-2*E(13)^10-E(13)^11-3*E(13)^12, 0,2*E(13)+E(13)^2+E(13)^3+E(13)^4+E(13)^5+E(13)^6+E(13)^7+E(13)^8+E(13)^9+E(13)^10+E(13)^12, 2*E(13)+E(13)^2+E(13)^3+E(13)^4+E(13)^5+E(13)^6+E(13)^7+E(13)^8+E(13)^9+E(13)^10+E(13)^12, 0,0,-1]] , [[0,0,1,0,0,0,0,0,0,0,0,0], [E(13),0,0,0,0,0,0,0,0,0,0,0], [0,E(13)^12,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,1,0,0,0]]]; return result;