# F:=RationalField(); local result, l; result:= rec(); result.comment:= "S8(2) as 35 x 35 matrices over Z.\n\ "; result.symmetricforms:= []; result.antisymmetricforms:= []; result.hermitianforms:= []; result.centralizeralgebra:= []; result.generators:= List( [ [ 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -1,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,1,0,0, 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,-1,-1,0,0,1,1,1,0,-1,0,-1,0,0,0,1,0,0,-1,0,0,1,0,0,0,0,-1,0,1,0,1,0,0, 0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,1,-1,0,0,0,-1,0,0,0,0, 0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,-1,0,0,0,0,0,-1,0,0,-1,0,0,1,0,0,0,0, 0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0, 0,0,0,1,0,0,-1,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,-1,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,1,0,0,-1,0,1,0,0,1,0,1,0,0,-1,0,0,1,1,-1,0,0,0,0,-1,1,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,0,-1,0,0,1,0,-1,0,0,-1,0,0,0,0,0,1,0,0,0,1,-1,0,0,1,1,0,0,0,-1,0,0,-1,1,0, 0,0,0,1,0,0,-1,-1,0,0,-1,1,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1,-1,0,-1,0,0,0,1,0, 0,0,0,0,0,0,-1,0,0,0,0,0,-1,0,-1,0,0,-1,0,0,0,0,0,0,-1,0,-1,0,-1,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0, -1,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,1,-1,0,0,0,0,-1,0,0,0,0,0,0,1,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0, 0,-1,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,1,0,0,-1,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,-1,0,-1,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0, 0,0,0,-1,0,0,1,0,1,0,1,-1,0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,-1,-1] ,[ 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,1,-1,0,0,0,-1,0,0,0,0, 1,-1,0,-1,0,1,0,0,1,0,0,-1,0,-1,-1,-1,0,-1,0,0,1,-1,0,0,0,1,-1,0,-1,0,0,0,0,-1,-1, 0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,-1,0,-1,0, 0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0, 0,0,1,0,0,-1,0,1,0,0,1,0,1,0,0,-1,0,0,1,1,-1,0,0,0,0,-1,1,0,0,0,0,0,0,0,0, 0,0,0,0,-1,0,0,0,0,1,-1,0,0,-1,1,0,1,1,0,0,0,0,0,0,1,0,0,0,0,-1,0,1,0,1,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,-1,-1,0,0,0,0,0,0,-1, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,-1,0,-1,0,0,1,-1,0,0,-1,1,0,1,0,0,0,0,0,1,0,0,0,0,0,-1,-1,0,1,0,1,1, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0, 0,1,0,1,1,0,0,-1,-1,0,0,1,0,1,0,0,0,0,0,0,1,0,0,-1,0,0,1,0,1,0,0,0,-1,1,0, 1,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,-1,0,0, 0,-1,0,0,1,1,0,0,0,-1,0,1,-1,0,-1,0,0,-1,0,0,0,0,-1,0,0,0,-1,0,0,0,0,-1,0,-1,-1, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,0,1,0,0,-1,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,-1, -1,1,0,0,1,0,1,0,0,0,1,0,0,1,0,1,-1,0,-1,0,0,0,0,0,0,-1,1,0,1,1,1,-1,0,0,0, 0,-1,0,0,0,0,-1,0,0,0,0,0,0,-1,0,-1,0,-1,1,0,0,0,0,0,0,0,-1,0,-1,-1,-1,1,0,0,0, 1,-1,1,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,1,0,0,0,0,1,0,1,0,0,-1,0,1,0,0,-1,0,-1,0,1,0,0,0,-1,0,0,0,0,1,1,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,-1,-1,0,0,1,1,1,0,-1,0,-1,0,0,0,1,0,0,-1,0,0,1,0,0,0,0,-1,0,1,0,1,0,0] ], l -> List( [ 0 .. 34 ], i -> l{ [ i*35+1 .. (i+1)*35 ] } ) ); return result;