/* S6(2) as 7 x 7 matrices over Z. Absolutely irreducible representation. Schur index 1. Integrally equivalent to representation in S62G1-Zr7B0.M, but with sparser generators. SEED: Nonzero vector v such that v*x = v*y*x*y^-1 = v*y^2*x*y^-2 = v*y^3*x*y^-3 = v*y^4*x*y^-4 = v*y^5*x*y^-5 = -v where = U4(2):2. v has 2 x 28 = 56 images under G; has 28 images under G. BASIS: v, v*y, v*y^2, v*y^3, v*y^4, v*y^5, v*y^6. Possible matrix entries are in {-1,0,1}. Average number of nonzero entries for any element of the group: 21 (21; about 42.857%). Entry Av/Mat %Av/Mat 0 28 [28] 57.143 [57+1/7] ±1 21 [21] 42.857 [42+6/7] 1 10.5 [10+1/2] 21.429 [21+3/7] -1 10.5 [10+1/2] 21.429 [21+3/7] p-MODULAR REDUCTIONS: p = 2: 6.1 (uniserial). other: absolutely irreducible. LATTICE DETAILS: Name: E7*. Aut grp: 2 x S6(2). Minimum: 3. Kiss no: 56. Determinant: 64. Elmnty divs: 1.2^6. Theta series: 1 + 56*q^3 + 126*q^4 + 576*q^7 + 756*q^8 + 1512*q^11 + 2072*q^12 + 4032*q^15 + 4158*q^16 + 5544*q^19 + 7560*q^20 + 12096*q^23 + 11592*q^24 + 13664*q^27 + 16704*q^28 + O(q^31). Minimum vectors are all in v^G. */ F:=Rationals(); Z:=Integers(); G:=MatrixGroup<7,F|\[ -1,0,0,0,0,0,0, 0,-1,0,0,0,0,0, 0,0,-1,0,0,0,0, 0,0,0,-1,0,0,0, 0,0,0,0,-1,0,0, 0,0,0,0,0,-1,0, 1,0,-1,-1,0,1,1] ,\[ 0,1,0,0,0,0,0, 0,0,1,0,0,0,0, 0,0,0,1,0,0,0, 0,0,0,0,1,0,0, 0,0,0,0,0,1,0, 0,0,0,0,0,0,1, 1,0,0,0,0,0,0] >; a:=x;b:=y; // Forms: B1 (Symmetric). // B1 (Symmetric form): Determinant 64 [e.divs: 1.2^6]. B1:=MatrixAlgebra(F,7)!\[ 3,-1,-1,1,1,-1,-1, -1,3,-1,-1,1,1,-1, -1,-1,3,-1,-1,1,1, 1,-1,-1,3,-1,-1,1, 1,1,-1,-1,3,-1,-1, -1,1,1,-1,-1,3,-1, -1,-1,1,1,-1,-1,3]; // Centralising algebra: Scalars only. C1:=MatrixAlgebra(F,7)!1; L1:=MatrixAlgebra(Z,7)!B1; LA1:=LatticeWithGram(L1); AU1:=AutomorphismGroup(LA1); // AU1 = <-x,y> = = <-x,-y> = 2 x S6(2).