/* S6(2) as 7 x 7 matrices over Q. Represented using orthogonal matrices. Absolutely irreducible representation. Schur index 1. MONOMIAL GROUP: M := = 2^6:L3(2) where z = (x*y^-2*x*y^2)^(y*x*y*x*y^-1*x). SEED: Nonzero vector v fixed by of order 192. Stab_G() = = 2^5:S6 where v*x = -v. v has 2 x 63 = 126 images under G; has 63 images under G. BASIS: v, v*y, v*y^2, v*y^3, v*y^4, v*y^5, v*y^6. Possible matrix entries are in {-1,-½,0,½,1}. Average number of nonzero entries for any element of the group: 25 + 2/3 (about 25.667; about 52.381%). Entry Av/Mat %Av/Mat 0 23.333 [23 + 1/3] 47.619 [47 + 13/21] nonzero 25.667 [25 + 2/3] 52.381 [52 + 8/21] ±½ 24.889 [24 + 8/9] 50.794 [50 + 50/63] ±1 0.778 [ 7/9] 1.587 [ 1 + 37/63] ½ 12.444 [12 + 4/9] 25.397 [25 + 25/63] -½ 12.444 [12 + 4/9] 25.397 [25 + 25/63] 1 0.389 [ 7/18] 0.794 [ 50/63] -1 0.389 [ 7/18] 0.794 [ 50/63] Dbl Coset #M-cosets Entries (for any elt in double coset) nonzero 0 ±½ ±1 M = M1M 1 7 42 0 7 MxM 14 19 30 16 3 MxyxM 56 25 24 24 1 MxyxyxM 64 28 21 28 0 p-MODULAR REDUCTIONS: p = 2: no reduction possible. other: absolutely irreducible. */ F:=Rationals(); G:=MatrixGroup<7,F|[ -1,0,0,0,0,0,0, 0,-1/2,1/2,1/2,0,0,-1/2, 0,1/2,-1/2,1/2,0,0,-1/2, 0,1/2,1/2,-1/2,0,0,-1/2, 0,0,0,0,-1,0,0, 0,0,0,0,0,-1,0, 0,-1/2,-1/2,-1/2,0,0,-1/2] ,\[ 0,1,0,0,0,0,0, 0,0,1,0,0,0,0, 0,0,0,1,0,0,0, 0,0,0,0,1,0,0, 0,0,0,0,0,1,0, 0,0,0,0,0,0,1, 1,0,0,0,0,0,0] >; a:=x;b:=y; z:=GL(7,F)!\[ 1,0,0,0,0,0,0, 0,1,0,0,0,0,0, 0,0,0,0,0,1,0, 0,0,0,1,0,0,0, 0,0,0,0,0,0,-1, 0,0,1,0,0,0,0, 0,0,0,0,-1,0,0]; z eq (x*y^-2*x*y^2)^(y*x*y*x*y^-1*x); // Forms: B1 (Symmetric). // B1 (Symmetric form): Determinant 1. B1:=MatrixAlgebra(F,7)!1; // Centralising algebra: Scalars only. C1:=MatrixAlgebra(F,7)!1;