# Character: X3 # Comment: complex conjugate of X.2 # Ind: 0 # Ring: C # Sparsity: 78% # Checker result: pass # Conjugacy class representative result: pass local a, A, b, B, c, C, w, W, i, result, delta, idmat; result := rec(); w := E(3); W := E(3)^2; a := E(5)+E(5)^4; A := -1-a; # b5, b5* b := E(7)+E(7)^2+E(7)^4; B := -1-b; # b7, b7** c := E(11)+E(11)^3+E(11)^4+E(11)^5+E(11)^9; C := -1-c; # b11, b11** i := E(4); result.comment := "S47 as 25 x 25 matrices\n"; result.generators := [ [[0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,2*b+B,-2,2*b+B,0,-2,-3*b-2*B,-2,0,-2,-3*b-2*B,-2*b-3*B,-1,0,b+2*B, -2,0,0,-2*b-3*B,b+2*B,0,0,-2,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,-2*b,1,-2*b,0,1,2*b+B,-b,0,2,2*b+B,b+2*B,0,-1,b,2,-1,0,b+2*B, b,-1,0,-b,0], [-2,-2,-2*b-3*B,b,-2*b-3*B,0,b,2*B,-B,0,b-B,2*B,-4*b-B,0,b+2*B,3*b+2*B, b-B,0,-1,-4*b-B,3*b+2*B,b+2*B,0,-B,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [-b,-b,2*b,-1,2*b,0,-1,-2*b-B,b,0,-2,-2*b-B,-2*b-3*B,0,-2*b-B,B,-2, 0,0,-2*b-3*B,B,-2*b-B,-1,b,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [B,B,b,B,b,0,B,1,0,0,-1,1,-b-2*B,0,-b,-b,-1,0,0,-b-2*B,-b,-b,0,0,-1 ]] , [[0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,2*b+B,-2,2*b+B,0,-2,-3*b-2*B,-2,0,-2,-3*b-2*B,-2*b-3*B,-1,0,b+2*B, -2,0,0,-2*b-3*B,b+2*B,0,0,-2,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [3*b+2*B,-b,6*b,4*b+B,3*b-2*B,0,5*b+4*B,-6*b-2*B,6*b+2*B,-3*b-2*B, 6*b+3*B,-5*b+B,-9*b-7*B,2*b,-b,-4,5*b+4*B,-b-3*B,b+2*B,-8*b-7*B, 3*b+2*B,0,0,5*b+B,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [-1,b+2*B,-3*B,b,-b-3*B,0,2*b+B,-2*b+B,b-B,-b,2*b,-b+2*B,-5*b-3*B, 0,-b+B,-2,3*b+B,1,-1,-5*b-3*B,-2,B,0,-2*B,0], [-2*B,2*B,-3*b-11*B,-4*B,-4*b-9*B,B,5*b,-2*b+6*B,b-6*B,-b+2*B,2*b-4*B, 3*b+10*B,-8*b-B,-b-3*B,-b+B,5*b+2*B,7*b+B,-5*b-4*B,3*b+2*B,-10*b-3*B, 3*b+B,-b,0,-6*B,0], [1,-2,-8*b-9*B,-2*b-3*B,6,0,-3*B,4*b+7*B,-4*b-6*B,2*b+3*B,-2*b-5*B, 6*b+7*B,-b+4*B,2,b+2*B,2*b,-4*B,-2*b,b,-2*b+3*B,b,B,0,-4*b-5*B,0 ], [2,-1,-6*b-4*B,-3*b-2*B,-4*b-2*B,-1,-3*b-4*B,6*b+5*B,-6*b-5*B,-2,-4*b-3*B, 6*b+3*B,5*b+6*B,-2*b-B,-1,-3*b-4*B,-3*b-4*B,-b+B,-B,4*b+6*B,2,0, -1,-5*b-4*B,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [-B,-b,b,2,0,B,0,0,-B,-b,1,-1,-1,1,1,-b-2*B,-1,1,0,0,1,1,0,-B,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]; return result;