/* www-ATLAS of Group Representations. 3O7(3):2 represented as 54 x 54 matrices over GF(2). */ F:=GF(2); x:=CambridgeMatrix(1,F,54,[ "001101010010100001110010110001011101110000111000000100", "110110010110011011000101100011111010010011101101101101", "011000001010000010110110011001011000001010110100011011", "010001111100100011110000011111111011000000011111110101", "011010001000011011001100010110011000001010111000111011", "010010101101101011000100100100110000001111010000111001", "110110111111100010101111101001101011100101011010101110", "010111100010010100100001011110101100010110111000110010", "111000110010110011100000110010000000110001001101010100", "010101000100100000100010110001110110110011100110010010", "011101001101100110101111100101000000111001100010101100", "001011000100010111011100100000001100011010000111111001", "000011011111000111011010110111001000011011000111100101", "100000001111010110001010011101111110110001100110011011", "111011101101000001010001000111000100101100000110100101", "110110110010011010100101000011101101111001010011111000", "111101111001011100010110111011111110110101000010000011", "001101110111001001001100010101100100010100110101000001", "111101100000111010001111101101010010000011100110011101", "011000001100000001001000001011111110111110011010001111", "111000100001100000100111010000101011011010011101000000", "011101011010100111010000101110001111100000011000001100", "001101011000111010100110111110010001100101110100010101", "111110011111100100101110100101110001101111010101101111", "101010110000011110101100011000111111010110000011001010", "101001110110001100010011100001011011010001000001101101", "111010000100000100100111001100101101001101001000101000", "011011100100111100001000101010000010101011100001011001", "111010001001101011011110101100101101110111100110111010", "000001010111011000110101111100111110111100001100000001", "101111100011000100001101010111001100110001110010100101", "001001111010000000001000101000000100001110010100000010", "001110110100101000110001011111001010011100111010000101", "111001101011101111000010001011000010101101100100001110", "100000011000011110101010111011011100010010000011110111", "001110111010001010001000110000000010000101111010010110", "101011101000001111101001010001000011101011001100010010", "000010000100001110010000110010100100101010011010011110", "110001000011011100010100001000000100001110010100011010", "000111100100111001110100001110111101010011000011001101", "111110011111001101100011011100010000001111110100101010", "101100111111011001100000000011001111001101100100100000", "111110001010000111100100011111010011001000111011101010", "010110001100100001010000010001000100010010011010011100", "100010111001100010111011110011000011000011010000101110", "000110111011100000001000111110010000101100110001111111", "010010010011001110110011110100110110110101110000100001", "010111000010000001111110110101001001011001010101100100", "110101111001001011000101001111111111111010111000110100", "111000000001000001100100001001110100000101110001100000", "110011110011111110111010010011100010001010010111101100", "000110110101110101110100110100001001100100000010000111", "000111110100110110000110100111111001111110010011110100", "110011111000010000110000011111010100101000001010000100"]); y:=CambridgeMatrix(1,F,54,[ "100111010001000101111100001000010010101010011000010011", "010111011110000001110001011101010011100101110011101111", "010011010010111000100010000000111100100010110100111100", "001100000001011000001000101000111100010100101101101000", "010101100111001100000010001101011000010100011000010011", "001110000100001100111110010101010010011000101010010101", "111001110001101100001001010010000000000010000100011010", "110000001110010110110101110110001001001100111001000101", "001110001101111001010111011010110111011011011001011110", "111001010000011010110100011101101001110110011010110111", "110111111011111000001011010111110101101110010100101110", "001110001101100011000111111110001011101000011000110000", "100010011011101000100110101010011100111000100101010111", "101111011010000101011111101011010000101001000011111001", "111001110011100110101001011000001111001010000101100100", "011110100111000000101011011011010100100100110001000100", "011101000000001000011101001010111010011100100111000100", "011101000000110111000111101000010001101011010011010110", "111001101010010110101111001101110011100111000011000001", "111101100010110100100001100000001111001101010000011011", "101001000011111001011111111111110010111101100110110011", "111111000001110110011000100000001100100000111010111000", "000100010000010110111111111010000010111001000000000010", "100101001000111010001000001100100100010100010110001111", "100100001000110010110110111111001101001100101100001010", "000011011110110100101010100100100101001011111010010010", "011101111001110100100101111001010000010101101111010000", "100001010110001101100001111001001001101110100101100101", "101011001111010001000101101010010100001110000011101111", "011011101101101100111001000000010100011011010010111011", "011100010001101111111110001001111001101100111101111110", "101101100011110101000011000000011010011001011000011111", "111101110001110011000100100001001110011100000101111001", "110010100010010000011111001001000100011001000001101111", "000100001011010110110011000001111010111110011000110101", "100100101000100011100101000011000010010110010001001000", "110000011101001010100001001100101011000010011100010110", "010110111000010110111010101100000111000000011111010111", "110100011100101010001111001010101110000111011000001110", "111111110100001111000010001111010100001101101111010101", "110001011010110110101111110010010000011110101101011011", "111110000110111100110001100101001000101100001101101101", "101101011111111101011101001010011101110111011111001000", "011100011001101011100111011101111010110000000101110100", "111011111010011010010110101101000110100001110011101001", "101011110111111110110100100111000100111000100000001111", "001001010010001000110001111011001010000011111100001010", "100011001100000010000010111111011101100111000000111101", "010101101010011010110000010001011110111010100010111101", "010000111001010001001010000010100011110100101101010111", "010100001001111000100011001011101001110101000011100001", "011100101110001100111111010001011111001101111010011001", "000011100010101110100000100010100101101010100110010010", "101110111010001001010001010000110101100001110101101101"]); G:=MatrixGroup<54,F|x,y>; print "Group G is 3O7(3):2 < GL(54,GF(2))";