/* O10+(2):2 presented on its standard generators. */ G:=Group; H1:=sub; H2:=sub; // H1 = H2 = C_G(x), of index 496. M2:=sub; // 2 x S8(2), of index 496. M3:=sub; // 2^8:O8+(2), of index 527. K1:=sub; // 2^10:L5(2), of index 4590. /* Demonstration of correctness (without R1,R2,R3): Relations x^2=y^16=(xy^2xy^2xy^-1)^9=1 demonstrate that |G:G'| = 2, and also force G to be generated by conjugates of x: indeed, G = . (The extra relation [x,y^5]^2=1 also forces G' to be perfect.) Relations x^2=[x,y^2]^2=[x,y^3]^3=[x,y^4]^2=[x,y^5]^2=1 show that H2 centralises x. Coset enumeration over H2 gives the index 496, what we expect in the known image O10+(2):2. [If R2 is added then H1 centralises x, and coset enumeration gives |G:H1| = 496.] Checkers for derived series: ============================ AQInvariants(G); DG:=sub;Index(G,DG); AQInvariants(DG); Enumeration without R1, R2 or R3: ================================= Index(G,H1:Hard:=true,Print:=2,CosetLimit:=50000); Index(G,H2:Hard:=true,Print:=2,Grain:=10^6,CosetLimit:=10^7); Enumerations with R2 and R3, but excluding R1: ============================================== Index(G,H1:Hard:=true,Print:=2,CosetLimit:=10000); Index(G,H2:Hard:=true,Print:=2,CosetLimit:=10000); Index(G,M2:Hard:=true,Print:=2,Grain:=20000,CosetLimit:=100000); Index(G,M3:Hard:=true,Print:=2,Grain:=50000,CosetLimit:=300000); Index(G,K1:Hard:=true,Print:=2,Grain:=10^6,CosetLimit:=60*10^6); // The last enumeration has not worked yet. (Enumerations done in Magma2.8.) */