/* www-ATLAS of Group Representations. A9 represented as 20 x 20 matrices over GF(2). */ F:=GF(2); x:=CambridgeMatrix(1,F,20,[ "01000000000000000000", "00010000000000000000", "00001000000000000000", "10000000000000000000", "00000001000000000000", "00000000010000000000", "00000000000100000000", "00100000000000000000", "00000000000000100000", "00000000000000001000", "00000000000000000010", "01000110100001010010", "11110100110100101100", "10100010010010100011", "10010100000101110010", "00100000111011011011", "00000100000000000000", "00101010000010100100", "10010000111101011000", "11001010011011101101"]); y:=CambridgeMatrix(1,F,20,[ "00100000000000000000", "01100000000000000000", "00000100000000000000", "00000010000000000000", "00000000100000000000", "00000000001000000000", "00000000000010000000", "00000000000001000000", "00000000000000010000", "00000000000000000100", "10000000111000011010", "10101001000100011100", "00000000000000000001", "11010110010111000101", "10001111101011100010", "10111111001101010100", "00111111011000011110", "00001101000010000001", "11000000100101000100", "11011000011000100110"]); G:=MatrixGroup<20,F|x,y>; print "Group G is A9 < GL(20,GF(2))";