# Character: X19 # Comment: nicer(ish) basis # Ind: 1 # Ring: C # Sparsity: 73% local b, B, w, W, i, result, delta, idmat; result := rec(); w := E(3); W := E(3)^2; b := E(7)+E(7)^2+E(7)^4; B := -1-b; # b7, b7** i := E(4); result.comment := "2A9 as 8 x 8 matrices\n"; result.generators := [ [[0,1,0,0,0,0,0,0], [-1,-1,0,0,0,0,0,0], [0,0,0,1,0,0,0,0], [0,0,-1,-1,0,0,0,0], [0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,1], [0,0,0,0,-1,0,-1,0], [0,0,0,0,0,-1,0,-1]] , [[0,0,1,0,0,0,0,0], [0,E(7)^6,0,0,0,0,0,0], [0,0,0,0,1,0,0,0], [0,0,0,0,0,1,0,0], [E(7)^6,-E(7)-E(7)^3-E(7)^4-2*E(7)^5,-E(7)^2-E(7)^4-E(7)^6,0,-E(7)-E(7)^3-E(7)^5-E(7)^6, 0,0,0], [0,-E(7)-E(7)^3+E(7)^5,0,0,-2*b-B,-E(7)-E(7)^2-E(7)^4-E(7)^6,-E(7), 0], [0,E(7)^4+E(7)^5+E(7)^6,E(7)^2+E(7)^4+E(7)^5+2*E(7)^6,-1,0,-E(7)-E(7)^3-E(7)^5-E(7)^6, 0,0], [0,E(7)+E(7)^3-E(7)^5,E(7)^2+E(7)^4-E(7)^6,0,2*E(7)+E(7)^2+E(7)^4+E(7)^6, -E(7)^2-E(7)^3-E(7)^4-E(7)^5,E(7),E(7)]]]; result.symmetricforms := [ ]; result.antisymmetricforms := [ ]; result.hermitianforms := [ ]; result.centralizeralgebra := [ ]; return result;