# Character: X16 # Comment: split 7 x 8 # Ind: 0 # Ring: C # Sparsity: 70% local b, B, w, W, i, result, delta, idmat; result := rec(); w := E(3); W := E(3)^2; b := E(7)+E(7)^2+E(7)^4; B := -1-b; # b7, b7** i := E(4); result.comment := "2A8 as 24 x 24 matrices\n"; result.generators := [ [[0,0,1/2*b,1/2*b+5/4*B,-1/2*b-5/4*B,-1/4*B,-1/2*b,1/2,0,b+3/4*B,0, 0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1/2*b-B,3/2*b+2*B,-2*b-3/2*B,0,-1/2*b+1/2*B,0,0,1/2*b-1/2*B, 0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-b,1/2*b,b+3/4*B,-1/2*b-5/4*B,-b-3/4*B,0,0,-1/2*b+1/2*B,b+3/4*B, 0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-b-3/2*B,5/4*b+7/8*B,-5/4*b-3/8*B,1/4*b+3/8*B,1/2*b+3/4*B,0,0, -3/4*b-13/8*B,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1/2,-1/4*b-5/8*B,3/4*b+9/8*B,3/4*b+7/8*B,-1/4*B,0,0,-5/4*b-9/8*B, 0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,3/2*b+1/4*B,-3/2*b-1/4*B,1/2*b+1/4*B,b+3/2*B,0,0,-3/2*b-7/4*B, 0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1/2*B,3/4*b+1/8*B,-3/4*b-5/8*B,-1/4*b-3/8*B,1/2*b+5/4*B,0,0, -1/4*b-3/8*B,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,0,-b-3/2*B,1/4*b-9/8*B,-5/4*b+5/8*B,1/4*b+3/8*B,1/2*b+3/4*B,-1, 0,-3/4*b-13/8*B,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,-b-5/2*B,b+3/2*B,1/2*B,b,0,0,-b-1/2*B,0,0,0,0,0,0,0,0,0,0,0, 0,0,0], [0,b,-3/2*b-B,1/2*b-1/2*B,3/2*B,-1/2,-1,0,1/2*b,5/2,0,0,0,0,0,0,0, 0,0,0,0,0,0,0], [0,0,0,-b+1/2*B,b-1/2*B,-1/2*B,1,0,0,b+3/2*B,0,0,0,0,0,0,0,1,0,0,0, 0,0,-1], [0,0,1,1/2*b+5/4*B,-1/2*b-5/4*B,-1/2*b-3/4*B,1/2*B,0,0,1/2*b+1/4*B, 0,0,0,0,0,0,0,0,1,0,0,0,0,-1], [0,0,0,-2*b-3/2*B,b+1/2*B,1/2*B,-B,0,0,b+3/2*B,0,0,0,0,0,0,0,0,0,1, 0,0,0,-1], [0,0,-1/2*B,-1/4*b+9/8*B,-3/4*b-13/8*B,-1/4*b-3/8*B,-1/2*b-3/4*B,0, 0,7/4*b+13/8*B,0,0,0,0,0,0,0,0,0,0,1,0,0,-1], [-b,0,1/2*B,-3/4*b-1/8*B,3/4*b-3/8*B,1/4*b+3/8*B,-1/2*b-5/4*B,0,0, 1/4*b+11/8*B,0,0,0,0,0,0,0,0,0,0,0,1,0,-1], [0,0,1/2,-5/4*b+3/8*B,3/4*b-7/8*B,1/4*b-1/8*B,-b-5/4*B,0,0,3/4*b+7/8*B, 0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,b,1/2,-5/4*b+3/8*B,3/4*b+1/8*B,3/4*b-1/8*B,-1/2*b-1/4*B,0,-1/2*b-B, 3/4*b+7/8*B,0,0,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,b+1/2*B,-b-1/2*B,1/2*B,0,0,0,-1/2*B,-1,0,0,0,0,0,1,-1,0,0,0, 0,0,1], [0,0,-1/2,1/4*b+5/8*B,1/4*b-1/8*B,1/4*b+1/8*B,-b-3/4*B,0,0,1/4*b+1/8*B, 0,-1,0,0,0,0,1,0,-1,0,0,0,0,1], [0,0,-b-1/2*B,11/4*b+13/8*B,-7/4*b-9/8*B,-1/4*b+1/8*B,1/2*b+5/4*B, 0,0,-5/4*b-15/8*B,0,0,-1,0,0,0,1,0,0,-1,0,0,0,1], [0,0,1,3/2*b+1/4*B,-3/2*b-1/4*B,-1/2*b+1/4*B,b+3/2*B,0,0,-1/2*b-7/4*B, 0,0,0,-1,0,0,1,0,0,0,-1,0,0,1], [b,0,1/2,5/4*b+11/8*B,-5/4*b-7/8*B,-1/4*b-1/8*B,3/4*B,1/2*b,0,-1/4*b-9/8*B, 0,0,0,0,-1,0,1,0,0,0,0,-1,0,1], [0,0,-b-1/2*B,11/4*b+13/8*B,-7/4*b-1/8*B,-1/4*b+1/8*B,1/2*b+5/4*B, 0,0,-5/4*b-15/8*B,0,0,0,0,0,0,1,0,0,0,0,0,0,1], [0,-b,0,2*b+3/2*B,-b-3/2*B,-b-1/2*B,0,0,B,-1/2*B,0,0,0,0,0,-1,1,0, 0,0,0,0,-1,1]] , [[0,0,1/2*B,b+3/4*B,-1/2*b-1/4*B,-1/2*b,1/2,0,0,1/2*b+1/4*B,0,0,0, 0,0,0,0,0,0,0,0,0,0,0], [1,0,1/2*b+B,1/2*b-1/2*B,0,-1/2*b+1/2*B,0,1/2*B,0,1/2*b,0,0,0,0,0, 0,0,0,0,0,0,0,0,0], [0,1,-1/2,b+3/4*B,1/2*b+5/4*B,0,0,0,3/2,-1/4*B,0,0,0,0,0,0,0,0,0,0, 0,0,0,0], [0,0,-1/2*b-1/4*B,-1/4*b-7/8*B,1/4*b-1/8*B,1/2*b+3/4*B,0,0,0,-3/4*b-5/8*B, 0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,-1/4*B,-3/4*b-3/8*B,1/4*b-5/8*B,-1/4*B,0,0,0,-1/4*b-1/8*B,1,0, 0,0,0,0,0,0,0,0,0,0,0,0], [0,0,b+1/2*B,-1/2*b-5/4*B,-1/2*b-3/4*B,b+3/2*B,0,0,0,-1/2*b-3/4*B, 0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1/2*b+1/4*B,1/4*b-1/8*B,-1/4*b+1/8*B,-1/2*b-3/4*B,0,0,0,-1/4*b-3/8*B, 0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,1/2*b-1/4*B,-5/4*b-15/8*B,1/4*b-1/8*B,1/2*b+3/4*B,-1,0,0,-3/4*b-5/8*B, 0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,-B,-b-1/2*B,b+1/2*B,b,0,1,0,-b-1/2*B,0,0,0,0,1,0,0,0,0,0,0,0, 0,0], [0,0,1/2*b,3/2,-1/2*B,-1,0,0,1/2*b,1/2,0,0,0,0,0,1,0,0,0,0,0,0,0,0 ], [0,0,1,b+3/2*B,-b-1/2*B,1,0,0,0,b+1/2*B,0,0,0,0,0,0,-1,0,0,0,0,0,0, -1], [0,0,1/2*B,1/2*b-1/4*B,-1/2*b+1/4*B,1/2*B,0,0,0,1/2*b+1/4*B,-1,0,0, 0,0,0,0,-1,0,0,0,0,0,0], [0,0,1,1/2*B,1/2*B,-B,0,0,0,1/2*B,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,-1/2*b+1/4*B,5/4*b+7/8*B,-1/4*b+1/8*B,-3/2*b-3/4*B,0,0,0,3/4*b+5/8*B, 0,0,-1,0,0,0,0,0,0,-1,0,0,0,0], [0,0,-1/2*b-1/4*B,3/4*b+9/8*B,1/4*b-1/8*B,-1/2*b-5/4*B,-b,0,0,1/4*b+3/8*B, 0,0,0,-1,0,0,0,0,0,0,-1,0,0,0], [0,0,-b-1/4*B,5/4*b+13/8*B,-3/4*b-5/8*B,-b-5/4*B,0,0,0,3/4*b+7/8*B, 0,0,0,0,-1,0,0,0,0,0,0,-1,0,0], [0,0,-b-1/4*B,1/4*b+5/8*B,-7/4*b-13/8*B,-1/2*b-1/4*B,0,0,3/2*b+B,3/4*b+7/8*B, 0,0,0,0,0,-1,0,0,0,0,0,0,-1,0], [0,0,-1,-1/2*B,b+1/2*B,0,0,0,0,1/2*B,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1/4*B,7/4*b+11/8*B,-1/4*b-3/8*B,-b-3/4*B,0,0,0,1/4*b+1/8*B,0, 0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,3/2*b+5/4*B,1/4*b-5/8*B,3/4*b+5/8*B,1/2*b+5/4*B,0,0,0,-1/4*b-7/8*B, 0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,b+1/2*B,-1/2*b-5/4*B,3/2*b+5/4*B,b+3/2*B,0,0,0,-1/2*b-3/4*B,0, 0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1/2*b+3/4*B,1/4*b-3/8*B,1/4*b+3/8*B,3/4*B,1/2*b,0,0,1/4*b-1/8*B, 0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,3/2*b+5/4*B,-3/4*b-13/8*B,3/4*b+5/8*B,1/2*b+5/4*B,0,-1,0,-1/4*b-7/8*B, 0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,b+1/2*B,b+3/2*B,0,0,0,1,-1/2*B,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ]]]; result.symmetricforms := [ ] result.antisymmetricforms := [ ] result.hermitianforms := [ ] result.centralizeralgebra := [ ]; return result;