/* www-ATLAS of Group Representations. 3.A7 represented as 21 x 21 matrices over GF(7). */ F:=GF(7); x:=CambridgeMatrix(1,F,21,[ "010000000000000000000", "000100000000000000000", "000001000000000000000", "100000000000000000000", "000000001000000000000", "000000000010000000000", "000000000000100000000", "000000000000001000000", "000000000000000010000", "000000000000000000100", "001000000000000000000", "161560060452135430414", "054023402044413141251", "362321131641236653563", "266442066451310066411", "000436212512232604206", "000010000000000000000", "516036004126611531366", "254064144455534306121", "610321132331145342046", "405461313055543514100"]); y:=CambridgeMatrix(1,F,21,[ "001000000000000000000", "000010000000000000000", "000000100000000000000", "000000010000000000000", "000000000100000000000", "000000000001000000000", "000000000000010000000", "000000000000000100000", "000000000000000001000", "000000000000000000010", "000000000000000000001", "056066600006000000000", "062112431600062562410", "646004600300020000040", "261042232625656141554", "514002320623066260231", "564424232240545454636", "412200421131613630166", "614265341425441665136", "656065600206010000060", "131225635035011360211"]); G:=MatrixGroup<21,F|x,y>; print "Group G is 3.A7 < GL(21,GF(7))";