# Character: X4 # Comment: complex conjugate of X.3 # Ind: 0 # Ring: C # Sparsity: 50% # Checker result: pass # Conjugacy class representative result: pass local b, B, w, W, i, result, delta, idmat; result := rec(); w := E(3); W := E(3)^2; b := E(7)+E(7)^2+E(7)^4; B := -1-b; # b7, b7** i := E(4); result.comment := "A7 as 10 x 10 matrices\n"; result.generators := [ [[0,1,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0], [1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0], [1,-1/2*b,-1/2*b-B,1/2*b,0,-1/4*b+1/2*B,-1/2*b,-1/4*b-1/2*B,-1/2*b, -1/2*b-B], [1,-1/2*b,-1/2*b,-1/2*b-B,1,3/4*b+3/2*B,-1/2*b,3/4*b+1/2*B,-1/2*b, -1/2*b-B], [0,b,0,B,-1,1,-1,-b,-B,B], [-b-2*B,3/2*b+B,3/2*b+B,-1/2*b+B,-b,-3/4*b-1/2*B,-1/2*b-B,1/4*b-1/2*B, -1/2*b-B,1/2*b], [1/2*b-B,-1/4*b+1/2*B,-3/4*b-1/2*B,-1/4*b-3/2*B,-3/2*b-2*B,-3/8*b+3/4*B, -5/4*b-3/2*B,13/8*b+3/4*B,-3/4*b-1/2*B,5/4*b-1/2*B]] , [[0,0,1,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,1], [-1/2*b-B,1/4*b+1/2*B,1/4*b+1/2*B,-3/4*b-1/2*B,-1/2*b,-1/8*b+1/4*B, -3/4*b-1/2*B,-1/8*b-3/4*B,1/4*b+1/2*B,-1/4*b-1/2*B], [1,-1/2*b,-1/2*b-B,1/2*b,0,-1/4*b+1/2*B,-1/2*b,-1/4*b-1/2*B,-1/2*b, -1/2*b-B], [1/2*b+B,3/4*b+1/2*B,3/4*b+1/2*B,-1/4*b+1/2*B,1/2*b+B,5/8*b-1/4*B, -1/4*b+1/2*B,-11/8*b-5/4*B,3/4*b+1/2*B,-3/4*b-1/2*B], [-2,-b,0,-B,0,0,0,0,0,0], [b,2,b,2*b+B,-B,-2*b-B,-B,-2,1,2*b+B]]]; return result;