/* A6 as 5 x 5 matrices over Z. Representation 5a. Absolutely irreducible representation. Schur Index 1. SEED: Nonzero v fixed by = A5. v has 1 x 6 = 6 images under G; has 6 images under G. BASIS: NSB([x,y]) with above v. Possible matrix entries are in {-1,0,1}. Average number of nonzero entries for any element of the group: 8 + 1/3 (about 8.333; 33.333%). Entry Av/Mat %Av/Mat 0 16.667 [16+2/3] 66.667 [66+2/3] ±1 8.333 [8+1/3] 33.333 [33+1/3] 1 4.167 [4+1/6] 16.667 [16+2/3] -1 4.167 [4+1/6] 16.667 [16+2/3] */ F:=Rationals(); G:=MatrixGroup<5,F|\[ 1,0,0,0,0, 0,0,1,0,0, 0,1,0,0,0, 0,0,0,0,1, 0,0,0,1,0] ,\[ 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0, 1,0,0,0,0, -1,-1,-1,-1,-1] >; // Forms: B1 (Symmetric). // B1 (Symmetric form): Determinant 1296 [e.divs: 1.6^4]. B1:=MatrixAlgebra(F,5)!\[ 5,-1,-1,-1,-1, -1,5,-1,-1,-1, -1,-1,5,-1,-1, -1,-1,-1,5,-1, -1,-1,-1,-1,5]; // Centralising algebra: Scalars only. C1:=MatrixAlgebra(F,5)!\[ 1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0, 0,0,0,0,1];