/* A6 as 8 x 8 matrices over Z[b5]. Representation 8b. Absolutely irreducible representation. Schur Index 1. SEED: Nonzero v fixed by = D8. v has 1 x 45 = 45 images under G; has 45 images under G. BASIS: All in v^G. Possible matrix entries are in {-1,0,1,b5,b5+1,-b5,-b5-1} (norms 0, 1 only). Average number of nonzero entries for any element of the group: 31 + 13/45 (about 31.289; 48.889%). Entry Av/Mat %Av/Mat 0 32.711 [32+32/45] 51.111 [51+1/9] nonzero 31.289 [31+13/45] 48.889 [48+8/9] ±1 15.644 [15+29/45] 24.444 [24+4/9] 1 7.822 [7+37/45] 12.222 [12+2/9] -1 7.822 [7+37/45] 12.222 [12+2/9] ±1±b5 12.644 [15+29/45] 24.444 [24+4/9] b5 3.911 [3+41/45] 6.111 [6+1/9] -b5 3.911 [3+41/45] 6.111 [6+1/9] 1+b5 3.911 [3+41/45] 6.111 [6+1/9] -1-b5 3.911 [3+41/45] 6.111 [6+1/9] */ R:=PolynomialRing(Rationals());F:=NumberField(X^2+X-1);r5:=2*b5+1; // F:=QuadraticField(5);b5:=(-1+r5)/2; G:=MatrixGroup<8,F|[ 1,0,0,0,0,0,0,0, 1,-1,1,1,1,1,-1,1, 0,0,0,0,0,0,0,1, b5+1,0,0,b5,b5+1,b5,-b5-1,0, -b5-1,0,0,-b5,-b5-1,-b5,b5,0, 0,0,0,0,0,1,0,0, 0,0,0,-1,-1,0,0,0, 0,0,1,0,0,0,0,0] ,[ 1,0,1,0,0,1,0,1, 1,0,0,0,b5+1,0,-b5-1,0, 0,0,0,0,1,0,0,0, b5+1,0,0,0,1,0,-b5-1,0, -b5-1,0,0,b5,-1,-1,1,0, 0,-1,0,0,0,0,-1,0, 0,b5,0,0,-b5,0,0,1, 0,0,0,1,0,0,0,0] >; // Forms: B1 (Symmetric). // B1 (Symmetric form): Determinant 59049 = 3^10. B1:=MatrixAlgebra(F,8)![ 8,-3*b5-1,-1,-1,-3*b5-1,-4,3*b5+2,-1, -3*b5-1,8,3*b5+2,3*b5+2,-3*b5-1,3*b5+2,-4,-3*b5-1, -1,3*b5+2,8,-3*b5-1,-1,-1,-3*b5-1,-4, -1,3*b5+2,-3*b5-1,8,-4,3*b5+2,-3*b5-1,-1, -3*b5-1,-3*b5-1,-1,-4,8,-1,3*b5+2,3*b5+2, -4,3*b5+2,-1,3*b5+2,-1,8,-3*b5-1,-1, 3*b5+2,-4,-3*b5-1,-3*b5-1,3*b5+2,-3*b5-1,8,3*b5+2, -1,-3*b5-1,-4,-1,3*b5+2,-1,3*b5+2,8]; // Centralising algebra: Scalars only. C1:=MatrixAlgebra(F,8)![ 1,0,0,0,0,0,0,0, 0,1,0,0,0,0,0,0, 0,0,1,0,0,0,0,0, 0,0,0,1,0,0,0,0, 0,0,0,0,1,0,0,0, 0,0,0,0,0,1,0,0, 0,0,0,0,0,0,1,0, 0,0,0,0,0,0,0,1];