# Character: X21 # Comment: tensor 3(3A6) with 4(2A6) # Ind: 0 # Ring: C # Sparsity: 75% local b, B, w, W, i, result, delta, idmat; result := rec(); w := E(3); W := E(3)^2; b := E(7)+E(7)^2+E(7)^4; B := -1-b; # b7, b7** i := E(4); result.comment := "6A6 as 12 x 12 matrices\n"; result.generators := [ [[0,-1,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0], [0,W,w,-w,0,0,0,0,0,0,0,0], [w,W,-1,-w,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,-W,-w,w], [0,0,0,0,0,0,0,0,-w,-W,1,w], [0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,-W,-w,w,0,0,0,0], [0,0,0,0,-w,-W,1,w,0,0,0,0]] , [[0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,1,w-W,-w,0,0,0,0,0], [0,0,0,0,-W,w,1,w,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0,0], [-1,-w+W,w,0,0,0,0,0,0,0,0,0], [W,-w,-1,-w,0,0,0,0,0,0,0,0], [0,0,-E(15)^7-E(15)^13,0,0,0,-E(15)^2-E(15)^8,0,0,0,1,0], [0,0,0,-E(15)^7-E(15)^13,0,0,0,-E(15)^2-E(15)^8,0,0,0,1], [-E(15)^7-E(15)^13,2*E(15)^2+E(15)^7+2*E(15)^8+E(15)^13,E(5)+E(5)^4, 0,-E(15)^2-E(15)^8,-E(15)^2-2*E(15)^7-E(15)^8-2*E(15)^13,E(15)^7+E(15)^13, 0,1,w-W,-w,0], [E(15)^2+E(15)^8,-E(5)-E(5)^4,-E(15)^7-E(15)^13,-E(5)-E(5)^4,E(5)+E(5)^4, -E(15)^7-E(15)^13,-E(15)^2-E(15)^8,-E(15)^7-E(15)^13,-W,w,1,w]]]; result.symmetricforms := [ ] result.antisymmetricforms := [ ] result.hermitianforms := [ ] result.centralizeralgebra := [ ]; return result;