# Character: X18 # Comment: tensor 3 with 5 # Ind: 0 # Ring: C # Sparsity: 81% local b, B, w, W, i, result, delta, idmat; result := rec(); w := E(3); W := E(3)^2; b := E(7)+E(7)^2+E(7)^4; B := -1-b; # b7, b7** i := E(4); result.comment := "3A6 as 15 x 15 matrices\n"; result.generators := [ [[-1,1,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,1,0,-1,1,0,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,-1,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,-1,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,1,-1,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,-1,0,1,-1,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0]] , [[0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,1,-1,-1,1,-1,0,0,0,0,0], [0,0,0,0,0,1,0,-1,0,-1,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0], [-1,1,1,-1,1,0,0,0,0,0,0,0,0,0,0], [-1,0,1,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,E(15)^7+E(15)^13,0,0,0,0,E(15)^2+E(15)^8,0,0,0,0,-1,0,0], [0,E(15)^7+E(15)^13,0,0,0,0,E(15)^2+E(15)^8,0,0,0,0,-1,0,0,0], [0,0,0,0,-E(15)^7-E(15)^13,0,0,0,0,-E(15)^2-E(15)^8,0,0,0,0,1], [-E(15)^7-E(15)^13,E(15)^7+E(15)^13,E(15)^7+E(15)^13,-E(15)^7-E(15)^13, E(15)^7+E(15)^13,-E(15)^2-E(15)^8,E(15)^2+E(15)^8,E(15)^2+E(15)^8, -E(15)^2-E(15)^8,E(15)^2+E(15)^8,1,-1,-1,1,-1], [-E(15)^7-E(15)^13,0,E(15)^7+E(15)^13,0,E(15)^7+E(15)^13,-E(15)^2-E(15)^8, 0,E(15)^2+E(15)^8,0,E(15)^2+E(15)^8,1,0,-1,0,-1]]]; result.symmetricforms := [ ]; result.antisymmetricforms := [ ]; result.hermitianforms := [ ]; result.centralizeralgebra := [ ]; return result;