/* 2"A5 as 4 x 4 matrices over Z[i6]. Absolutely irreducible representation. Schur Index 2. SEED: Nonzero v s.t. v.(1+i6*x+y+y^2) = 0. v is fixed by = 3. v has 2 x 20 = 40 images under G; has 20 images under G. BASIS: v, v.x, v.y, v.y^2*x. Possible matrix entries for any element of the group: The 31 elements of {0,±1,±2,±4,±i6,±i6±1,±i6±2,±i6±3,±i6±5,±2i6,±2i6±4} only. The possible norms are in {0,1,4,6,7,10,15,16,24,31,40} only. Average number of nonzero entries for any element of the group: 13 + 1/5 (13.2; 82.5% exactly). Entry Av/Mat %Av/Mat 0 2.8 17.5 ±1 2.0 ea 12.5 each ±2 0.4 ea 2.5 each ±4 0.6 ea 3.75 each ±i6 0.4 ea 2.5 each ±i6±1 0.6 ea 3.75 each ±i6±2 0.2 ea 1.25 each ±i6±3 0.2 ea 1.25 each ±i6±5 0.2 ea 1.25 each ±2i6 0.4 ea 2.5 each ±2i6±4 0.2 ea 1.25 each Norm 0 [0] 2.8 17.5 Norm 1 [±1] 4.0 25 Norm 4 [±2] 0.8 5 Norm 6 [±i6] 0.8 5 Norm 7 [±i6±1] 2.4 15 Norm 10 [±i6±2] 0.8 5 Norm 15 [±i6±3] 0.8 5 Norm 16 [±4] 1.2 7.5 Norm 24 [±2i6] 0.8 5 Norm 31 [±i6±5] 0.8 5 Norm 40 [±2i6±4] 0.8 5 nonzero 13.2 82.5 */ F:=QuadraticField(-6); G:=MatrixGroup<4,F|[ 0,1,0,0, -1,0,0,0, i6,-1,0,-1, 1,i6,1,0] ,[ 0,0,1,0, 0,1,0,0, -1,-i6,-1,0, -1,-2,i6+1,1] >; A:=x;B:=y; // Complex conjugates of x and y. xc:=GL(4,F)![Conjugate(u):u in Eltseq(x)]; yc:=GL(4,F)![Conjugate(u):u in Eltseq(y)]; // Forms: B1 (Antisymmetric); B2 (Hermitian). // B1 (Antisymmetric form): Determinant 1. B1:=MatrixAlgebra(F,4)!\[ 0,0,1,0, 0,0,0,-1, -1,0,0,-1, 0,1,1,0]; // B2 (Hermitian form): Determinant 36. B2:=MatrixAlgebra(F,4)![ 12,-4*i6,i6+6,-4*i6, 4*i6,12,4*i6,-i6+6, -i6+6,-4*i6,12,-i6-6, 4*i6,i6+6,i6-6,12]; // B2a = -B2/i6: Determinant 1. B2a:=MatrixAlgebra(F,4)![ 2*i6,4,i6-1,4, -4,2*i6,-4,i6+1, i6+1,4,2*i6,-i6+1, -4,i6-1,-i6-1,2*i6]; // Centralising algebra: Scalars only. C1:=MatrixAlgebra(F,4)!\[ 1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1];