/* 2"A5 as 4 x 4 matrices over Z[i]. Absolutely irreducible representation. Schur Index 2. SEED: Nonzero v s.t. v.x = i*v and v.x^(yxy) = -i*v where = Q12. v has 4 x 10 = 40 images under G; has 10 images under G. BASIS: v, v.y, v.y^2, v.x^3*y*x*y^2*x. Possible matrix entries for any element of the group: The 9 elements of {0,1,-1,i,-i,1+i,1-i,-1+i,-1-i} only. The possible norms are in {0,1,2} only. Average number of nonzero entries for any element of the group: 11 + 1/5 (11.2; 70% exactly). Entry Av/Mat %Av/Mat 0 4.8 30 1 1.6 10 -1 1.6 10 i 1.6 10 -i 1.6 10 1+i 1.2 7.5 1-i 1.2 7.5 -1+i 1.2 7.5 -1-i 1.2 7.5 Norm 0 4.8 30 Norm 1 6.4 40 Norm 2 4.8 30 nonzero 11.2 70 */ F:=QuadraticField(-1); G:=MatrixGroup<4,F|[ i,0,0,0, -1,i,-1+i,-1-i, 1,-1+i,-1-i,-i, -1,-1-i,-i,1-i] ,\[ 0,1,0,0, 0,0,1,0, 1,0,0,0, 0,0,0,1] >; A:=x;B:=y; // Complex conjugates of x and y. xc:=GL(4,F)![Conjugate(u):u in Eltseq(x)]; yc:=GL(4,F)![Conjugate(u):u in Eltseq(y)]; // Forms: B1 (Antisymmetric); B2 (Hermitian). // B1 (Antisymmetric form): Determinant 9. B1:=MatrixAlgebra(F,4)!\[ 0,1,-1,1, -1,0,1,1, 1,-1,0,1, -1,-1,-1,0]; // B2 (Hermitian form): Determinant 1. B2:=MatrixAlgebra(F,4)![ 2,-i,i,-i, i,2,-i,-i, -i,i,2,-i, i,i,i,2]; // Centralising algebra: Scalars only. C1:=MatrixAlgebra(F,4)!\[ 1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1];