matrix := [ [Z(49)^15,Z(49)^40,0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49)], [0*Z(49),0*Z(49),Z(49)^48,0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49)], [0*Z(49),0*Z(49),0*Z(49),0*Z(49),Z(49)^48,0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49)], [0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),Z(49)^48,0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49)], [0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),Z(49)^48,0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49)], [0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),Z(49)^48, 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49)], [0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), Z(49)^48,0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49)], [0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),Z(49)^48,0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49)], [0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),Z(49)^48,0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49)], [0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),Z(49)^48,0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49)], [0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),Z(49)^48,0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49)], [0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),Z(49)^48,0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49)], [0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), Z(49)^48,0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49)], [0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),Z(49)^48,0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49)], [0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),Z(49)^48,0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49)], [Z(49)^42,Z(49)^43,Z(49)^47,Z(49)^40,Z(49)^26,Z(49)^9,Z(49)^20,Z(49)^1,Z(49)^20, Z(49)^46,Z(49)^37,Z(49)^48,Z(49)^19,Z(49)^37,Z(49)^48,0*Z(49),Z(49)^48,0*Z(49), 0*Z(49),0*Z(49),Z(49)^29,Z(49)^48,0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49)], [0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),Z(49)^48,0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49)], [0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),Z(49)^48,0*Z(49),0*Z(49), 0*Z(49),0*Z(49)], [0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),Z(49)^48, 0*Z(49),0*Z(49)], [0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), Z(49)^48,0*Z(49)], [Z(49)^37,Z(49)^47,Z(49)^13,Z(49)^2,Z(49)^16,Z(49)^40,Z(49)^12,Z(49)^34,Z(49)^7, Z(49)^48,Z(49)^7,Z(49)^15,Z(49)^28,Z(49)^5,Z(49)^45,Z(49)^32,Z(49)^48,Z(49)^26, 0*Z(49),Z(49)^48,Z(49)^38,Z(49)^45,Z(49)^38,Z(49)^27,Z(49)^16,Z(49)^39,0*Z(49), Z(49)^46,Z(49)^12,0*Z(49),Z(49)^47,Z(49)^36], [Z(49)^6,Z(49)^41,Z(49)^15,Z(49)^33,Z(49)^18,Z(49)^7,Z(49)^18,Z(49)^10,0*Z(49), Z(49)^44,Z(49)^16,Z(49)^22,Z(49)^46,Z(49)^44,0*Z(49),Z(49)^21,0*Z(49),Z(49)^24, Z(49)^22,Z(49)^23,Z(49)^47,0*Z(49),Z(49)^24,Z(49)^47,Z(49)^41,Z(49)^24,0*Z(49), 0*Z(49),0*Z(49),0*Z(49),Z(49)^24,Z(49)^13], [Z(49)^21,Z(49)^20,Z(49)^22,Z(49)^12,Z(49)^48,Z(49)^29,Z(49)^40,Z(49)^40,Z(49)^40, Z(49)^27,Z(49)^18,Z(49)^29,0*Z(49),Z(49)^18,Z(49)^29,Z(49)^19,Z(49)^29,0*Z(49), 0*Z(49),0*Z(49),0*Z(49),Z(49)^29,0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),Z(49)^29, 0*Z(49),0*Z(49),0*Z(49),0*Z(49)], [Z(49)^18,Z(49)^45,Z(49)^36,Z(49)^12,Z(49)^7,Z(49)^38,Z(49)^1,Z(49)^11,Z(49)^1, Z(49)^28,0*Z(49),0*Z(49),0*Z(49),Z(49)^13,Z(49)^24,0*Z(49),0*Z(49),Z(49)^19, 0*Z(49),0*Z(49),0*Z(49),Z(49)^24,0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),Z(49)^29,0*Z(49),0*Z(49)], [Z(49)^15,Z(49)^2,Z(49)^29,Z(49)^21,Z(49)^11,Z(49)^13,0*Z(49),Z(49)^39,Z(49)^44, Z(49)^39,Z(49)^15,0*Z(49),0*Z(49),Z(49)^35,0*Z(49),0*Z(49),Z(49)^24,0*Z(49), Z(49)^19,0*Z(49),0*Z(49),Z(49)^24,0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49),0*Z(49), 0*Z(49),0*Z(49),Z(49)^29,0*Z(49)], [Z(49)^45,Z(49)^44,Z(49)^46,Z(49)^36,Z(49)^3,Z(49)^35,Z(49)^46,Z(49)^34,Z(49)^46, Z(49)^26,Z(49)^20,Z(49)^31,Z(49)^40,0*Z(49),0*Z(49),Z(49)^43,Z(49)^31,Z(49)^17, Z(49)^23,Z(49)^34,Z(49)^24,0*Z(49),Z(49)^43,0*Z(49),0*Z(49),0*Z(49),0*Z(49), Z(49)^24,Z(49)^34,Z(49)^24,0*Z(49),0*Z(49)], [Z(49)^4,Z(49)^41,Z(49)^37,Z(49)^18,Z(49)^16,Z(49)^11,Z(49)^21,Z(49)^39,0*Z(49), Z(49)^9,Z(49)^26,Z(49)^31,Z(49)^1,Z(49)^29,Z(49)^31,Z(49)^43,0*Z(49),Z(49)^12, Z(49)^17,Z(49)^34,Z(49)^24,0*Z(49),0*Z(49),Z(49)^43,0*Z(49),Z(49)^32,Z(49)^34, Z(49)^24,0*Z(49),0*Z(49),Z(49)^24,0*Z(49)], [Z(49)^11,Z(49)^32,Z(49)^30,Z(49)^9,Z(49)^19,Z(49)^24,Z(49)^46,Z(49)^20,0*Z(49), Z(49)^9,Z(49)^18,Z(49)^11,Z(49)^26,Z(49)^11,Z(49)^7,Z(49)^43,Z(49)^34,Z(49)^23, Z(49)^29,Z(49)^16,Z(49)^29,Z(49)^7,Z(49)^42,Z(49)^31,Z(49)^20,Z(49)^19,0*Z(49), Z(49)^26,Z(49)^40,0*Z(49),Z(49)^3,Z(49)^40], [Z(49)^28,Z(49)^38,Z(49)^29,Z(49)^11,Z(49)^33,Z(49)^45,Z(49)^44,Z(49)^19,0*Z(49), Z(49)^22,Z(49)^45,Z(49)^39,Z(49)^32,Z(49)^22,0*Z(49),Z(49)^35,0*Z(49),Z(49)^27, Z(49)^39,Z(49)^42,Z(49)^35,0*Z(49),0*Z(49),Z(49)^12,Z(49)^1,Z(49)^27,0*Z(49), 0*Z(49),0*Z(49),Z(49)^24,Z(49)^30,Z(49)^40], [Z(49)^41,Z(49)^30,Z(49)^30,Z(49)^14,Z(49)^24,Z(49)^15,Z(49)^16,Z(49)^17,Z(49)^40, Z(49)^32,Z(49)^24,Z(49)^20,Z(49)^10,Z(49)^13,Z(49)^37,Z(49)^41,Z(49)^19,Z(49)^37, Z(49)^34,Z(49)^1,Z(49)^9,Z(49)^37,Z(49)^14,Z(49)^46,Z(49)^35,Z(49)^36,0*Z(49), Z(49)^36,Z(49)^36,Z(49)^26,Z(49)^33,Z(49)^22], [Z(49)^14,Z(49)^18,Z(49)^35,Z(49)^30,Z(49)^45,Z(49)^19,Z(49)^11,Z(49)^9,Z(49)^32, Z(49)^38,Z(49)^45,Z(49)^32,Z(49)^28,Z(49)^41,Z(49)^11,Z(49)^23,Z(49)^23,0*Z(49), Z(49)^36,Z(49)^27,Z(49)^24,Z(49)^18,Z(49)^1,Z(49)^46,Z(49)^40,Z(49)^38,Z(49)^45, Z(49)^33,Z(49)^23,Z(49)^38,Z(49)^23,Z(49)^12], [Z(49)^24,Z(49)^12,Z(49)^28,Z(49)^6,Z(49)^9,Z(49)^35,Z(49)^5,Z(49)^38,Z(49)^26, Z(49)^19,Z(49)^32,Z(49)^29,Z(49)^8,Z(49)^45,Z(49)^29,Z(49)^36,Z(49)^38,Z(49)^2, Z(49)^29,Z(49)^23,Z(49)^11,Z(49)^21,Z(49)^36,Z(49)^2,Z(49)^31,0*Z(49),Z(49)^32, Z(49)^22,Z(49)^10,0*Z(49),0*Z(49),Z(49)^3] ];