/* www-ATLAS of Group Representations. 2.A11 represented as 56 x 56 matrices over GF(5). */ F:=GF(5); x:=CambridgeMatrix(1,F,56,[ "24222412024443404401323340332121012233213420112404214122", "04434323441134143303044113110011143130200432133401344113", "00403230304220033422400411224143231123331313041041404041", "34222411003323123333103033430323411033444332002242121042", "04423001200101242130100043240333344202200001223431020131", "11111043320342214341442204331114301430322001343202410221", "22021241401113241000124041100310310012443221220024210031", "31242112022430040131143211030231440424300331144002322201", "31022134302043314214442321132220042411444023224021103104", "14002343011242120211302242341203212001200424022031000301", "30440202010010220004024213311440320022400320102134343012", "03124104430402310404312122224300410432240131003224332140", "13211034331403204344211314200323123114213244334233011240", "34310413211211301204113112012402031323412032122122431432", "00224330444243214323222300104440112024031142312012300203", "20301330314324004110001344043432404434103424341100100433", "01234344143400300003223001123234214420024331112343304403", "32344410233411011132103131322323431001220234221302410410", "04143112401142442442100004431110041222044424222432342414", "10233110011104200404123222322432124124344410132043142243", "03040122200422223200443300030003123020310132440302123240", "43442412023332042112313334430040241104214312344400404202", "33403244223343411033232422330343432220401423001433322401", "31342002124022204131003043000143303401010104104222013000", "33112330220443321122343340133043443402322012434410122020", "03334334411322200221114131023403101312004420243202101302", "12041010103330041011102101244000103121422222332120232123", "33144133124334133224034434213043404110233302001110143311", "22114242222133113141343102404303122413111424233000244121", "11100440013413411301434012211442341204132400432143313400", "40403210221413443234023322410440140121133110012321223343", "14144142012202204112140200232120244400030232104123204030", "41402112024213420244434241124141043040400021003104303300", "03040144234011043334143114002013041143313221113411310322", "43400031344201230001300101330424041041213100221210442404", "13043121001201134302442131112243140030424012334103404433", "21231034442341324132010424300020223440040424124241211103", "11221212220131222001320231423123400312341220124020021244", "41331024030413002414134410303100342010130233344202131010", "12113342221444230220200143320244321422021022202240034113", "13012214410121420104302412334323113033143440401114131434", "40111301031002011404201203032201340331214301202112333004", "23312320322011220322403234410100440033431001334414213414", "03320142044322433042113434211124412330013300441121134141", "42013141340133043203233432144333301223403312020422140220", "41243444312343132402231220320022024302011142201344032433", "02042014321441331222120121142334103321141223141243222020", "33213201304014030410422421230313113214233344041133130341", "14034210204444224302133231012440423222033031001313233331", "10023423431031222402400121104001324241120010041144141130", "31110444302113012014103243322343204222122112441420210340", "23314134324001134000102114204014032211121320042410344310", "14333042024211121401423022331443201140031040120401411010", "22112033332442444301112402041330440414131104030024412020", "33001133301342330004441143223110442201410313424413341314", "40224420243122204021330433404430341042231433043012410401"]); y:=CambridgeMatrix(1,F,56,[ "40443414241211130031434000033303430333033440433401004413", "00100332021013120443113303442043044140100404330311301222", "11124402023302403133112433014404032012332432341232314202", "32232024224110334231410340432032021220001214021122102434", "33310141103141331120310332222112131241004132343103442300", "00343413430034010232101244342322123111420002243443300431", "04410040230003233040423013214122013230322441322232302020", "33422343242330112302231431212410112231032110003303402021", "04013441422210042424114012201022212233340223143001043103", "40021203203321333421200042321314023103242040330101104411", "20431102043313142113022403203322234433023103104411401420", "04243013424042424424243413102323341443024242322314344324", "43001322332214210223231113144420104430233222303210041200", "02121201324310420014143210312143230000220340324243201004", "10133312131341424431224124440010040221333002033100232123", "04310234034432240111032401341212033311434242313121332303", "34004340202120123313130102301100424024133304241231133022", "14424211211314404344242013131330341440442100434421424022", "10034213240043313410423422403040021300110421300220012300", "03340001133410013221242001131002230203001302044332022010", "44403232444100424312213322343341434244033431211112021111", "12431143230240333342033131230101422241301044331430142010", "33432020140030344320120144202220022344242044403422121334", "22142321221441230333304001404432420101413423342112230200", "04411314200402232300040400003304113442313243110422430303", "04341223312302223233113132134430242234312334030144404234", "24044323300223430231403120332214011041334311234324144230", "23423233302334403303300043043343114310320414214330310101", "41221323001021212023101104401021213212202310434431301014", "03214132042424344101344234001432002040241124201340222320", "21030420102441424043322234244404021310334223213010444404", "11431231341220430033234003330333414443241220331021341033", "14302024313003430443304124142131244432014020304140401010", "22220210431020404110442112042240433113330404102321320042", "00320014123402300122343012441011410303430334022211034002", "03203410034304032101203011344411040232201044330400041144", "13143321302342141423300011233312242241042013241020012312", "12312123122120444002230330232342221341314220314143114002", "33011223201012324300142230230013312223403012023402211421", "02012304321243233224213423320200442144130333100214420341", "23213104342132041040334142140244321012104421320342013100", "43302332224410022122323143433124444442323314331300401412", "43303121323224234314121242412040040124242412110022413113", "44403124420301214111210400402443222321342213141122140234", "30200432044024331341004232231442011030104103011304301003", "12140241044304204143000141111241110201200012341003300324", "11110022042043311023130111424112031341341144212024132434", "23440411302302241142032202414102441320343330224034244242", "11404042031222311342023410213422332234440110133301310113", "10001433014123323340330004200440030312310111413100342240", "14231211343122344121331241141142412430303431240113404400", "22240032112340314412401210010132122340044103402204013434", "44202404213234224221211114300400413411024020142140134030", "21443132440211414430022421431010144112033414212131322043", "11003214132320033230234100013241014311240120112200414420", "01043403014200330430201242241230331121441311300212430102"]); G:=MatrixGroup<56,F|x,y>; print "Group G is 2.A11 < GL(56,GF(5))";