/* www-ATLAS of Group Representations. 2.A10 represented as 56 x 56 matrices over GF(5). */ F:=GF(5); x:=CambridgeMatrix(1,F,56,[ "32123000011401333403144224332424014222312231014211201043", "03111210030002331124002313013000200324432312222321231443", "33433331444341211231334230422331304114141404410103403320", "32411204300343402242034024331412033312330341401013143241", "11421321240422321423114433011042241023212031110131132030", "34102403340104023123304410323343233024131440144120120242", "41031424421234041424232111134214414030214442133413030022", "22122010140433211122222402233104120044131143300130141310", "03230344023343413443311434333214224212030143010104412313", "14131022314214444244324323120314043140041013313302241312", "04101422212231431324011003220200013013441304432412100140", "23230212230014410323322232101111001110003131324440203113", "14444410041012142131124342414323243132242140141014214423", "41002023221404200224412440221401300112132301010002222230", "23303040303203011001432211122340432033212411414032243334", "44220102411124144033341402204031334122033142003143230432", "31422004321101301410102200244204421440304444344240023301", "11234234321200221434012111231002323113400342414222103132", "34202344343214034040014140112420312343443330321102210112", "12034434333014102400220144034243432420044400411042013024", "12232241432434403200034134342200443024422124040113113013", "20042041033022214003203140241220131441440420434202232221", "34423042220023032222310102414103244031100333202141401213", "12302400413224324230420303033241024220300002142411240441", "44421131220230221014223031130423413212043300024402322441", "20403422410213420440303442401001213011402042320100324231", "04204242421333342210001431300330222424043401021101444212", "31231400024440012421410402204201043232323121034211020234", "04031031102042220424022030223222222243130020430440433044", "04023210013143244432142201331430140403443120031400102332", "32413312422430324340421010332100123333433214243230123320", "03221101001221342044230302433122241141341142321121442310", "24024432133342214240212010014103331411112044423414210143", "02144041240201334444404212120401311243400022302321224321", "11413314041443312443333330231314103342204420403324214413", "13033012402343404430011223404402334034413033122434413122", "01301042144231242023411242300331434414333224414011403310", "12022141233414332204232430023103143003311310113202441133", "32423213243430233200224424114321133042431111142020312300", "40041410034221401240334400222411012220014011101003402402", "11222421143410331331230240044140433403043224120412240003", "04433242341314231402111421301112041401402104310023211411", "11120330130340233104424022420412042400142440324423204200", "44311240324311312000413042433244033332424434323214014144", "11022130111110033334140441003330044241220133331311200311", "11014321302210101202100111224233300004431243244141441141", "24404144240402220331123310412320420212330000230424433244", "23210402240302000124321204241112121203024104402411313111", "03343233203401123000012304120321234102131011004042332243", "20404400112332400322220244244032200240304341420120132412", "23040403111202303033222133103230131240334211234343332140", "23102303402204142202141241020012223302223000402131104401", "12314222001330340233234140231122132410332023032040002443", "00301402022404114411212420300324003342303343142210333212", "32103303441131403430313411411130103241443400113232031102", "41231340000120230314211122412142203130133344334010234230"]); y:=CambridgeMatrix(1,F,56,[ "40443414241211130031434000033303430333033440433401004413", "00100332021013120443113303442043044140100404330311301222", "11124402023302403133112433014404032012332432341232314202", "32232024224110334231410340432032021220001214021122102434", "33310141103141331120310332222112131241004132343103442300", "00343413430034010232101244342322123111420002243443300431", "04410040230003233040423013214122013230322441322232302020", "33422343242330112302231431212410112231032110003303402021", "04013441422210042424114012201022212233340223143001043103", "40021203203321333421200042321314023103242040330101104411", "20431102043313142113022403203322234433023103104411401420", "04243013424042424424243413102323341443024242322314344324", "43001322332214210223231113144420104430233222303210041200", "02121201324310420014143210312143230000220340324243201004", "10133312131341424431224124440010040221333002033100232123", "04310234034432240111032401341212033311434242313121332303", "34004340202120123313130102301100424024133304241231133022", "14424211211314404344242013131330341440442100434421424022", "10034213240043313410423422403040021300110421300220012300", "03340001133410013221242001131002230203001302044332022010", "44403232444100424312213322343341434244033431211112021111", "12431143230240333342033131230101422241301044331430142010", "33432020140030344320120144202220022344242044403422121334", "22142321221441230333304001404432420101413423342112230200", "04411314200402232300040400003304113442313243110422430303", "04341223312302223233113132134430242234312334030144404234", "24044323300223430231403120332214011041334311234324144230", "23423233302334403303300043043343114310320414214330310101", "41221323001021212023101104401021213212202310434431301014", "03214132042424344101344234001432002040241124201340222320", "21030420102441424043322234244404021310334223213010444404", "11431231341220430033234003330333414443241220331021341033", "14302024313003430443304124142131244432014020304140401010", "22220210431020404110442112042240433113330404102321320042", "00320014123402300122343012441011410303430334022211034002", "03203410034304032101203011344411040232201044330400041144", "13143321302342141423300011233312242241042013241020012312", "12312123122120444002230330232342221341314220314143114002", "33011223201012324300142230230013312223403012023402211421", "02012304321243233224213423320200442144130333100214420341", "23213104342132041040334142140244321012104421320342013100", "43302332224410022122323143433124444442323314331300401412", "43303121323224234314121242412040040124242412110022413113", "44403124420301214111210400402443222321342213141122140234", "30200432044024331341004232231442011030104103011304301003", "12140241044304204143000141111241110201200012341003300324", "11110022042043311023130111424112031341341144212024132434", "23440411302302241142032202414102441320343330224034244242", "11404042031222311342023410213422332234440110133301310113", "10001433014123323340330004200440030312310111413100342240", "14231211343122344121331241141142412430303431240113404400", "22240032112340314412401210010132122340044103402204013434", "44202404213234224221211114300400413411024020142140134030", "21443132440211414430022421431010144112033414212131322043", "11003214132320033230234100013241014311240120112200414420", "01043403014200330430201242241230331121441311300212430102"]); G:=MatrixGroup<56,F|x,y>; print "Group G is 2.A10 < GL(56,GF(5))";